The Apache Hadoop YARN is designed as a Resource Management and ApplicationMaster technology in open source. YARN does the resource management and provides central platform in order to deliver efficient operations. Several companies use it for taking advantage of cost effective, linear storage processing. One can check the availability of the job across cities including Mumbai, Delhi, Bangalore, Pune and Hyderabad. Apache Hadoop YARN role consists handling multiple data processing engines like data science, interactive SQL, real time streaming. Wisdomjobs has interview questions which are exclusively designed for job seekers to assist them in clearing job interviews. Apache Hadoop YARN job interview questions are useful for developers to attend job interviews and get selected for Apache Hadoop YARN job position.
Answer :
Apache YARN, which stands for 'Yet another Resource Negotiator', is Hadoop cluster resource management system.
YARN provides APIs for requesting and working with Hadoop's cluster resources. These APIs are usually used by components of Hadoop's distributed frameworks such as MapReduce, Spark, and Tez etc. which are building on top of YARN. User applications typically do not use the YARN APIs directly. Instead, they use higher level APIs provided by the framework (MapReduce, Spark, etc.) which hide the resource management details from the user.
Question 2. What Are The Key Components Of Yarn?
Answer :
The basic idea of YARN is to split the functionality of resource management and job scheduling/monitoring into separate daemons.
YARN consists of the following different components:
Resource Manager - The Resource Manager is a global component or daemon, one per cluster, which manages the requests to and resources across the nodes of the cluster.
Node Manager - Node Manger runs on each node of the cluster and is responsible for launching and monitoring containers and reporting the status back to the Resource Manager.
Application Master is a per-application component that is responsible for negotiating resource requirements for the resource manager and working with Node Managers to execute and monitor the tasks.
Container is YARN framework is a UNIX process running on the node that executes an application-specific process with a constrained set of resources (Memory, CPU, etc.).
Question 3. What Is Resource Manager In Yarn?
Answer :
The YARN Resource Manager is a global component or daemon, one per cluster, which manages the requests to and resources across the nodes of the cluster.
The Resource Manager has two main components - Scheduler and Applications Manager.
Scheduler - The scheduler is responsible for allocating resources to and starting applications based on the abstract notion of resource containers having a constrained set of resources.
Application Manager - The Applications Manager is responsible for accepting job-submissions, negotiating the first container for executing the application specific Application Master and provides the service for restarting the Application Master container on failure.
Question 4. What Are The Scheduling Policies Available In Yarn?
Answer :
YARN scheduler is responsible for scheduling resources to user applications based on a defined scheduling policy. YARN provides three scheduling options - FIFO scheduler, Capacity scheduler and Fair scheduler.
FIFO Scheduler - FIFO scheduler puts application requests in queue and runs them in the order of submission.
Capacity Scheduler - Capacity scheduler has a separate dedicated queue for smaller jobs and starts them as soon as they are submitted.
Fair Scheduler - Fair scheduler dynamically balances and allocates resources between all the running jobs.
Question 5. How Do You Setup Resource Manager To Use Capacity Scheduler?
Answer :
You can configure the Resource Manager to use Capacity Scheduler by setting the value of property 'yarn.resourcemanager.scheduler.class' to 'org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler' in the file 'conf/yarn-site.xml'.
Question 6. How Do You Setup Resource Manager To Use Fair Scheduler?
Answer :
You can configure the Resource Manager to use FairScheduler by setting the value of property 'yarn.resourcemanager.scheduler.class' to 'org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler' in the file 'conf/yarn-site.xml'.
Question 7. How Do You Setup Ha For Resource Manager?
Answer :
Resource Manager is responsible for scheduling applications and tracking resources in a cluster. Prior to Hadoop 2.4, the Resource Manager does not have option to be setup for HA and is a single point of failure in a YARN cluster.
Since Hadoop 2.4, YARN Resource Manager can be setup for high availability. High availability of Resource Manager is enabled by use of Active/Standby architecture. At any point of time, one Resource Manager is active and one or more of Resource Managers are in the standby mode. In case the active Resource Manager fails, one of the standby Resource Managers transitions to an active mode.
Question 8. What Are The Core Changes In Hadoop 2.x?
Answer :
Many changes, especially single point of failure and Decentralize Job Tracker power to data-nodes is the main changes. Entire job tracker architecture changed.
Some of the main difference between Hadoop 1.x and 2.x given below:
Question 9. What Is The Difference Between Mapreduce 1 And Mapreduce 2/yarn?
Answer :
In MapReduce 1, Hadoop centralized all tasks to the Job Tracker. It allocates resources and scheduling the jobs across the cluster. In YARN, de-centralized this to ease the work pressure on the Job Tracker. Resource Manager responsibility allocate resources to the particular nodes and Node manager schedule the jobs on the application Master. YARN allows parallel execution and Application Master managing and execute the job. This approach can ease many Job Tracker problems and improves to scale up ability and optimize the job performance. Additionally YARN can allows to create multiple applications to scale up on the distributed environment.
Question 10. How Hadoop Determined The Distance Between Two Nodes?
Answer :
Hadoop admin write a script called Topology script to determine the rack location of nodes. It is trigger to know the distance of the nodes to replicate the data. Configure this script in core-site.xml
<Property>
<name>topology.script.file.name</name>
<value>core/rack-awareness.sh</value>
</property>
in the rack-awareness.sh you should write script where the nodes located.
Answer :
HDFS first renames its file name and place it in /trash directory for a configurable amount of time. In this scenario block might freed, but not file. After this time, Namenode deletes the file from HDFS name-space and make file freed. It’s configurable as fs.trash.interval in core-site.xml. By default its value is 1, you can set to 0 to delete file without storing in trash.
Question 12. What Is Difference Between Hadoop Namenode Federation, Nfs And Journal Node?
Answer :
HDFS federation can separate the namespace and storage to improve the scalability and isolation.
Question 13. Yarn Is Replacement Of Mapreduce?
Answer :
YARN is generic concept, it support MapReduce, but it’s not replacement of MapReduce. You can development many applications with the help of YARN. Spark, drill and many more applications work on the top of YARN.
Question 14. What Are The Core Concepts/processes In Yarn?
Answer :
Resource manager: As equivalent to the Job Tracker
Node manager: As equivalent to the Task Tracker.
Application manager: As equivalent to Jobs. Everything is application in YARN. When client submit job (application),
Containers: As equivalent to slots.
Yarn child: If you submit the application, dynamically Application master launch Yarn child to do Map and Reduce tasks.
If application manager failed, not a problem, resource manager automatically start new application task.
Question 15. Steps To Upgrade Hadoop 1.x To Hadoop 2.x?
Answer :
To upgrade 1.x to 2.x dont upgrade directly. Simple download locally then remove old files in 1.x files. Up-gradation take more time.
Question 16. What Is Apache Hadoop Yarn?
Answer :
YARN is a powerful and efficient feature rolled out as a part of Hadoop 2.0.YARN is a large scale distributed system for running big data applications.
Question 17. Is Yarn A Replacement Of Hadoop Mapreduce?
Answer :
YARN is not a replacement of Hadoop but it is a more powerful and efficient technology that supports MapReduce and is also referred to as Hadoop 2.0 or MapReduce 2.
Question 18. What Are The Additional Benefits Yarn Brings In To Hadoop?
Answer :
Effective utilization of the resources as multiple applications can be run in YARN all sharing a common resource. In Hadoop MapReduce there are seperate slots for Map and Reduce tasks whereas in YARN there is no fixed slot. The same container can be used for Map and Reduce tasks leading to better utilization.
Question 19. How Can Native Libraries Be Included In Yarn Jobs?
Answer :
There are two ways to include native libraries in YARN jobs:-
Question 20. Explain The Differences Between Hadoop 1.x And Hadoop 2.x?
Answer :
Question 21. What Are The Core Changes In Hadoop 2.0?
Answer :
Hadoop 2.x provides an upgrade to Hadoop 1.x in terms of resource management, scheduling and the manner in which execution occurs. In Hadoop 2.x the cluster resource management capabilities work in isolation from the MapReduce specific programming logic. This helps Hadoop to share resources dynamically between multiple parallel processing frameworks like Impala and the core MapReduce component. Hadoop 2.x Hadoop 2.x allows workable and fine grained resource configuration leading to efficient and better cluster utilization so that the application can scale to process larger number of jobs.
Question 22. Differentiate Between Nfs, Hadoop Namenode And Journal Node?
Answer :
Question 23. What Are The Modules That Constitute The Apache Hadoop 2.0 Framework?
Answer :
Hadoop 2.0 contains four important modules of which 3 are inherited from Hadoop 1.0 and a new module YARN is added to it.
Hadoop Common – This module consists of all the basic utilities and libraries that required by other modules.
HDFS- Hadoop Distributed file system that stores huge volumes of data on commodity machines across the cluster.
MapReduce- Java based programming model for data processing.
YARN- This is a new module introduced in Hadoop 2.0 for cluster resource management and job scheduling.
Question 24. How Is The Distance Between Two Nodes Defined In Hadoop?
Answer :
Measuring bandwidth is difficult in Hadoop so network is denoted as a tree in Hadoop. The distance between two nodes in the tree plays a vital role in forming a Hadoop cluster and is defined by the network topology and java interface DNS Switch Mapping. The distance is equal to the sum of the distance to the closest common ancestor of both the nodes. The method get Distance(Node node1, Node node2) is used to calculate the distance between two nodes with the assumption that the distance from a node to its parent node is always 1.
Apache Hadoop YARN Related Tutorials |
|
---|---|
SQL Server 2008 Tutorial | MySQL Tutorial |
Hadoop Tutorial | Apache Hive Tutorial |
Apache Pig Tutorial | Apache Flume Tutorial |
Apache Impala Tutorial | MongoDB Tutorial |
Apache Hadoop YARN Related Practice Tests |
|
---|---|
SQL Server 2008 Practice Tests | MySQL Practice Tests |
Hadoop Practice Tests | Hadoop Administration Practice Tests |
MongoDB Practice Tests |
Apache Hadoop Yarn Practice Test
All rights reserved © 2020 Wisdom IT Services India Pvt. Ltd
Wisdomjobs.com is one of the best job search sites in India.